Eigenvalue Analysis of Double-span Timoshenko Beams by Pseudospectral Method

Jinhee Lee*

Department of Mechano-Informatics, Hongik University, Chochiwon, Yeonki-kun, Choongnam 339-701, Korea

The pseudospectral method is applied to the free vibration analysis of double-span Timoshenko beams. The analysis is based on the Chebyshev polynomials. Each section of the double-span beam has its own basis functions, and the continuity conditions at the intermediate support as well as the boundary conditions are treated separately as the constraints of the basis functions. Natural frequencies are provided for different thickness-to-length ratios and for different span ratios, which agree with those of Euler-Bernoulli beams when the thickness-to-length ratio is small but deviate considerably as the thickness-to-length ratio grows larger.

Key Words: Eigenvalue Analysis, Double-span Timoshenko Beam, Pseudospectral Method, Chebyshev Polynomials

1. Introduction

The Euler-Bernoulli beam theory neglects the effect of the transverse shear strain of beam bending because of the assumption that the plane cross-sections perpendicular to the axis of the beam remain plane and perpendicular after deformation. The Euler-Bernoulli beam theory can give excellent solutions to the vibration analysis of slender beams. Beams in real practice, however, may have appreciable thickness where the transverse shear and rotary inertia are not negligible as assumed in the Euler-Bernoulli beam theory. As the result the Timoshenko beam theory that takes the transverse shear and the rotary inertia into consideration has gained more popularity.

Research on beam vibration can be divided into three categories. Firstly, there exist exact solutions only for a restricted number of simple cases. Secondly, studies of semi-analytic solutions are available. Finally, there are the most widely used discretization methods such as the finite element method and the finite difference method. As it is more useful to have analytical results than to resort to numerical methods, most efforts focus on developing efficient semi-analytic solu-

Multi-span beams are frequently used in many mechanical and civil engineering applications such as the rail systems and the bridges. Gorman computed the natural frequencies of double-span Euler-Bernoulli beams by proposing local solutions for each span and by matching the continuity conditions at the intermediate support (Gorman, 1974). The study on the free vibration of multi-span Euler-Bernoulli beams also has been carried out by various methods such as the finite element method (Hayashikawa and Watanabe, 1985), the Green function method (Kukla, 1991), and the transfer matrix method (Hosking et al., 2004). The free vibration analysis of multi-span beams based on the Timoshenko theory has been investigated using various methods such as Rayleigh-Ritz method (Zhou, 2001)

E-mail: eng213@naver.com

TEL: +82-42-860-2589; **FAX**: +82-41-862-2664Department of Mechano-Informatics, Hongik University, Chochiwon, Yeonki-kun, Choongnam 339-701, Korea. (Manuscript Received March 22, 2005; Revised July 13, 2005)

^{*} Corresponding Author,

and the transfer matrix method (Lin and Chang, 2005). Also the response of multi-span beams subjected to moving loads or masses is studied extensively (Cai et al., 1988; Chatterjee et al., 1994; Wang, 1997).

The pseudospectral method can be considered to be a spectral method that performs a collocation process. As the formulation is straightforward and powerful enough to produce approximate solutions close to exact solutions, this method has been highly successful in many areas such as turbulence modeling, weather prediction and non-linear waves (Boyd, 1989). Even though this method can be used for the solution of structural mechanics problems, it has been largely unnoticed by the structural mechanics community, and few articles are available where the pseudospectral method has been applied. Recently it has been successfully applied to the eigenvalue problems of Timoshenko beams and Mindlin plates (Lee, 1998; 2002; 2003a; 2003b; 2003c; 2004; Lee and Schultz, 2004). In the present work, the pseudospectral method is applied to the free vibration analysis of double-span Timoshenko beams.

2. Formulations of Double-span Timoshenko Beams

Consider a uniform beam of length L, which is either pinned or clamped at the ends and has a roller support at an intermediate location x=S as depicted in Fig. 1. The equations of motion of the beam in the intervals of 0 < x < S and S < x < L are given by

$$EI\frac{d^{2}\theta}{dx^{2}} + \alpha hG\left(\frac{dw}{dx} - \theta\right) = -\omega^{2}\rho I\theta$$

$$\alpha hG\frac{d}{dx}\left(\frac{dw}{dx} - \theta\right) = -\omega^{2}\rho hw$$
(1)

where θ , w and ω are the lateral deflection, the rotation of the normal line and the natural frequency, respectively. E and G are Young's modulus and the shear modulus, α is the shear correction factor, h is the thickness of the beam,

(a) Pinned-pinned-pinned support

(b) Clamped-pinned-pinned support

(c) Clamped-pinned-clamped support

Fig. 1 Beam geometry and support conditions

I is the second moment of area, and ρ is the density.

The boundary conditions are either

clamped:
$$\theta = 0$$
, $w = 0$
or (2)
pinned: $\frac{d\theta}{dx} = 0$, $w = 0$

at x=0 and at x=L. The continuity conditions at x=S are represented as follows:

$$w(x=S^{-}) = 0$$

$$w(x=S^{+}) = 0$$

$$\theta(x=S^{-}) = \theta(x=S^{+})$$

$$\frac{d\theta}{dx}(x=S^{-}) = \frac{d\theta}{dx}(x=S^{+})$$
(3)

It is convenient to introduce normalized variables z_1 and z_2 such that each of the section between the supports is represented by

$$z_{1} = \frac{2x - S}{S} \in [-1, 1] \text{ for } (0 \le x \le S)$$

$$z_{2} = \frac{2x - S - L}{L - S} \in [-1, 1] \text{ for } (S \le x \le L)$$
(4)

The governing equations (1) can be rewritten as

$$EI\left(\frac{2}{S}\right)^{2}\theta'' - \alpha hG\theta + \alpha hG\frac{2}{S}\theta' = -\omega^{2}\rho I\theta$$

$$-\alpha hG\frac{2}{S}\theta' + \alpha hG\left(\frac{2}{S}\right)^{2}w'' = -\omega^{2}\rho hw$$

$$(-1 < z_{1} < 1)$$

and

$$EI\left(\frac{2}{L-S}\right)^{2}\theta^{\dagger\dagger} - ahG\theta + ahG\frac{2}{L-S}\theta^{\dagger} = -\omega^{2}\rho I\theta$$

$$-ahG\frac{2}{L-S}\theta^{\dagger} + ahG\left(\frac{2}{L-S}\right)^{2}w^{\dagger\dagger} = -\omega^{2}\rho hw$$

$$(-1 < z_{2} < 1)$$

where ' and † represent the differentiations with respect to z_1 and z_2 , respectively. The series expansions of the exact solutions $\theta(x)$ and w(x) have infinite numbers of terms. In this study, however, the dependent variables are approximated by the partial sums as follows:

$$\theta(x) \cong \overline{\theta}(z_1) = \sum_{k=1}^{K+2} a_k T_{k-1}(z_1)$$

$$w(x) \cong \overline{w}(z_1) = \sum_{k=1}^{K+2} b_k T_{k-1}(z_1)$$
(-1 < z_1 < 1) (7)

and

$$\theta(x) \cong \overline{\theta}(z_2) = \sum_{n=1}^{N+2} c_n T_{n-1}(z_2)$$

$$w(x) \cong \overline{w}(z_2) = \sum_{n=1}^{N+2} d_n T_{n-1}(z_2)$$
(-1 < z₂ < 1) (8)

where a_k , b_k , c_n and d_n are the expansion coefficients and T_{n-1} is the Chebyshev polynomial of the first kind of degree of n-1. Mikami and Yoshimura suggested an efficient way to handle the boundary conditions by adopting less collocation points than the number of expansion terms (Mikami and Yoshimura, 1984).

Expansions (7) and (8) are substituted into Eqs. (5) and (6) and are collocated at the Gauss-Lobatto collocation points

$$\xi_{i} = -\cos \frac{\pi(2i-1)}{2K} \ (i=1, 2, \dots, K) \ \text{for} \ (-1 < z_{1} < 1)$$

$$\eta_{j} = -\cos \frac{\pi(2j-1)}{2N} \ (j=1, 2, \dots, N) \ \text{for} \ (-1 < z_{2} < 1)$$
(9)

to yield

$$\sum_{k=1}^{K+2} \left[a_k \left\{ \frac{4EI}{S^2} T_{k-1}''(\xi_i) - ahGT_{k-1}(\xi_i) \right\} + b_k \frac{2ahG}{S} T_{k-1}'(\xi_i) \right]$$

$$= -\omega^2 \rho I \sum_{k=1}^{K+2} a_k T_{k-1}(\xi_i)$$

$$\sum_{k=1}^{K+2} \left\{ -a_k \frac{2ahG}{S} T_{k-1}'(\xi_i) + b_k \frac{4ahG}{S^2} T_{k-1}''(\xi_i) \right\}$$

$$= -\omega^2 \rho h \sum_{k=1}^{K+2} b_k T_{k-1}(\xi_i)$$

$$(i=1, 2, \dots, K)$$

and

$$\begin{split} &\sum_{n=1}^{N+2} \left[c_{n} \left\{ \frac{4EI}{(L-S)^{2}} T_{n-1}^{\dagger \dagger} (\eta_{j}) - \alpha hGT_{n-1} (\eta_{j}) \right\} + d_{n} \frac{2\alpha hG}{L-S} T_{k-1}^{\dagger} (\eta_{j}) \right] \\ &= -\omega^{2} \rho I \sum_{n=1}^{N+2} c_{n} T_{n-1} (\eta_{j}) \\ &\sum_{n=1}^{N+2} \left\{ -c_{n} \frac{2\alpha hG}{L-S} T_{n-1}^{\dagger} (\eta_{j}) + d_{n} \frac{4\alpha hG}{(L-S)^{2}} T_{n-1}^{\dagger \dagger} (\eta_{j}) \right\} \\ &= -\omega^{2} \rho h \sum_{n=1}^{N+2} d_{n} T_{n-1} (\eta_{j}) \end{split} \tag{11}$$

Eqs. (10) and (11) can be rearranged in the matrix form

$$[H]\{\delta\} + [H^*]\{\delta^*\}$$

$$= \omega^2(\lceil F \rceil \{\delta\} + \lceil F^* \rceil \{\delta^*\})$$
(12)

where the vectors in Eq. (12) are defined by

$$\{\delta\} = \{a_1 \ a_2 \cdots a_K \ b_1 \ b_2 \cdots b_K \ c_1 \ c_2 \cdots c_N \ d_1 \ d_2 \cdots d_N\}^T$$

$$\{\delta^*\} = \{a_{K+1} \ a_{K+2} \ b_{K+1} \ b_{K+2} \ c_{N+1} \ c_{N+2} \ d_{N+1} \ d_{N+2}\}^T$$

$$(13)$$

The total number of equations in Eq. (12) is 2(K+N) whereas the total number of unknowns in Eq. (13) is 2(K+N+4). The remaining eight equations are obtained from the continuity conditions and the boundary conditions.

Using the expansions (7) and (8), the continuity conditions (3) can be rewritten as

$$\sum_{k=1}^{N+2} b_k T_{k-1}(1) = 0$$

$$\sum_{n=1}^{K+2} d_n T_{n-1}(-1) = 0$$

$$\sum_{k=1}^{K+2} a_k T_{k-1}(1) = \sum_{n=1}^{N+2} c_n T_{n-1}(-1)$$

$$\frac{1}{S} \sum_{k=1}^{K+2} a_k T'_{k-1}(1) = \frac{1}{L-S} \sum_{n=1}^{N+2} c_n T^{\dagger}_{n-1}(-1)$$
(14)

The boundary conditions are either

clamped:
$$\sum_{k=1}^{K+2} \alpha_k T_{k-1}(-1) = 0$$

$$\sum_{k=1}^{K+2} b_k T_{k-1}(-1) = 0$$
 or (15)

$$\begin{aligned} \textit{pinned}: \quad & \sum_{k=1}^{K+2} \alpha_k T_{k-1}' \left(-1\right) = 0 \\ & \sum_{k=1}^{K+2} b_k T_{k-1} \left(-1\right) = 0 \end{aligned}$$

at x=0, and either

clamped:
$$\sum_{n=1}^{N+2} c_n T_{n-1}(1) = 0$$
$$\sum_{n=1}^{N+2} d_n T_{n-1}(1) = 0$$
or (16)

pinned:
$$\sum_{n=1}^{N+2} c_n T_{n-1}^{\dagger} (1) = 0$$
$$\sum_{k=1}^{N+2} d_k T_{k-1} (1) = 0$$

at x = L.

The continuity conditions (14) and boundary conditions (15)-(16) can be rearranged in the matrix form

$$\lceil U \rceil \{\delta\} + \lceil V \rceil \{\delta^*\} = \{0\} \tag{17}$$

where $\{0\}$ is a zero vector. Since $\{\delta^*\}$ in Eq. (17) can be expressed as

$$\{\delta^*\} = -[V]^{-1}[U]\{\delta\}$$
 (18)

the set of equations (12) can be reformulated as

$$\begin{array}{l} ([H] - [H^*][V]^{-1}[U]) \{\delta\} \\ = \omega^2 ([F] - [F^*][V]^{-1}[U]) \{\delta\} \end{array}$$
 (19)

The solution of (19) yields the estimate for the natural frequencies and the corresponding mode shapes.

3. Numerical Examples

A preliminary run for the convergence check of the eigenvalues of a double-span Timoshenko beam which has a clamped-pinned-pinned support is carried out for h/L=0.01 and S/L=0.5, and the results are given in Table 1. The numbers of collocation points which determines the size of the problem change from K=M=3 to K=M=20. The total number of equations in (10) and (11) is 2(K+N), and the size of matrices in equation (19) becomes 80×80 for K=M=20. Table 1 clearly shows the rapid convergence nature of the pseudospectral method, where it is readily shown that it requires less than K=M=10 for the 4 lowest eigenvalues to converge to 6 significant digits, and less than K=M=15 for eigenvalues of the 10 lowest modes to 6 significant digits. The numbers given in Tables 1~4 are the non-dimensionalized frequency parameters β defined as

$$\beta = \sqrt[4]{\rho A \omega^2 / EI} \tag{20}$$

where A is the cross sectional area of the beam.

Table 1 Convergence test of the non-dimensionalized frequency parameter β of the double span Timoshenko beam as the number of the collocation points increase (clamped-pinned-pinned support, ν =0.3, α = 5/6, h/L=0.01, S/L=0.5)

Mode	K=N=3	K=N=5	K=N=10	K=N=15	K=N=20
1	6.92346	6.78556	6.78306	6.78306	6.78306
2	9.20854	8.93385	8.91641	8.91641	8.91641
3		13.8677	13.0692	13.0692	13.0692
4		16.6498	15.1408	15.1408	15.1408
5		21.3141	19.3074	19.3059	19.3059
6		24.3702	21.3626	21.3590	21.3590
7			25.5133	25.5046	25.5046
8			27.5497	27.5302	27.5302
9			32.2921	31.6532	31.6532
10			34.9092	33.6454	33.6454

Through out the paper, Poisson's ratio and the shear coefficient of the beam are ν =0.3 and α = 5/6, respectively.

Computational results for the collocation points K=M=20 with pinned-pinned-pinned, clamped-pinned-pinned, and clamped-pinned-clamped supports are given in Tables $2\sim4$, respectively. The natural frequencies are calculated for different thickness-to-length ratios ranging from h/L=0.005 to h/L=0.1. It is well known that the static and dynamic characteristics of Timoshenko beams approach those of Euler-Bernoulli beams when the thickness of the beams is very small, and the eigenvalues based on the Euler-Bernoulli theory (Gorman, 1974) are given in Tables $2\sim4$ for the purpose of comparison. The results of Tables $2\sim4$ show that the Timoshenko beam results are very close to the Euler-

Bernoulli beam results when the thickness-to-length ratio h/L is small, showing that at least three significant digits are identical with the Euler-Bernoulli results in most cases when the thickness-to-length ratio is 0.005. As h/L grows larger, however, the computed eigenvalues show some quantitative differences from those of Euler-Bernoulli beams. The natural frequencies ω in Tables $2\sim4$ increase as h/L increases, even though the frequency parameters β in Tables $2\sim4$ tend to decrease because the second moment of area I grows faster than ω^2 as h/L increases.

It is possible that there might be optimal combinations of K and M, the numbers of the Gauss-Labotto collocation points, when the size of one span is different from the other, however, they are assumed to be the same for the sake of simplicity. It is also shown that the computed

Table 2 Non-dimensionalized frequency parameter β of the double span Timoshenko beam (pinned-pinned-pinned support, ν =0.3, α =5/6, K=N=20)

C/I	Mode	Classical	h/L					
S/L		theory	0.005	0.01	0.02	0.05	0.1	
0.1	1	4.22637	4.22591	4.22455	4.21913	4.18246	4.06718	
	2	7.63130	7.62983	7.62542	7.60798	7.49282	7.15781	
	3	11.0505	11.0469	11.0361	10.9934	10.7217	10.0034	
	4	14.4793	14.4718	14.4497	14.3633	13.8364	12.5864	
	5	17.9123	17.8990	17.8592	17.7057	16.8169	14.9262	
	1	4.61832	4.61794	4.61680	4.61224	4.58106	4.47920	
	2	8.39155	8.39000	8.38536	8.36697	8.24478	7.88141	
0.2	3	12.1617	12.1576	12.1452	12.0966	11.7863	10.9647	
	4	15.7080	15.6997	15.6749	15.5784	14.9926	13.6132	
	5	17.8725	17.8574	17.8127	17.6395	16.6350	14.5092	
0.3	1	5.13179	5.13136	5.13010	5.12506	5.09060	4.97761	
	2	9.27693	9.27513	9.26976	9.24847	9.10743	8.69103	
	3	11.7804	11.7760	11.7630	11.7119	11.3851	10.5183	
	4	14.2845	14.2769	14.2544	14.1666	13.6316	12.3683	
	5	18.4048	18.3907	18.3488	18.1870	17.2526	15.2730	
0.4	1	5.78261	5.78210	5.78058	5.77451	5.73309	5.59796	
	2	8.76786	8.76607	8.76073	8.73954	8.59896	8.18261	
	3	11.3129	11.3091	11.2976	11.2522	10.9627	10.1941	
	4	15.7080	15.6997	15.6749	15.5784	14.9926	13.6132	
	5	17.3296	17.3158	17.2749	17.1165	16.1984	14.2547	
0.5	1	6.28319	6.28265	6.28106	6.27471	6.23136	6.09066	
	2	7.85321	7.85163	7.84690	7.82817	7.70352	7.33122	
	3	12.5664	12.5621	12.5494	12.4994	12.1813	11.3431	
	4	14.1372	14.1294	14.1062	14.0154	13.4611	12.1454	
	5	18.8496	18.8352	18.7926	18.6282	17.6810	15.6790	

Table 3 Non-dimensionalized frequency parameter β of the double span Timoshenko beam (clamped-pinned-pinned support, ν =0.3, α =5/6, K=N=20)

1		Mode	Classical h/L						
0.1 2 7.67648 7.67446 7.66845 7.64507 7.50420 7.16181 0.1 3 11.1062 11.1019 11.0889 11.0383 10.7343 10.0068 4 14.5436 14.5552 14.5103 14.4141 13.8498 12.5892 5 17.9862 17.9716 17.9285 17.7629 16.8312 14.9281 1 4.67394 4.67338 4.67170 4.66504 4.62108 7.89667 2 8.46945 8.46759 8.46204 8.44010 8.29731 7.89667 0.2 3 12.2832 12.2785 12.2645 12.2095 11.8646 10.9536 4 16.0717 16.0620 16.0331 15.9209 15.2512 13.7356 5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 1 5.21414 5.21357 5.21189 5.20518 5.0186 2 9.47849 9.47628 9.46967 9.44352	S/L			0.005	0.01	0.02	0.05	0.1	
0.1 3 11.1062 11.1019 11.0889 11.0383 10.7343 10.0068 4 14.5436 14.5352 14.5103 14.4141 13.8498 12.880 5 17.9862 17.9716 17.9285 17.7629 16.8312 12.8281 1 4.67394 4.67338 4.67170 4.66504 4.62108 4.49240 2 8.46945 8.46759 8.46204 8.44010 8.29731 7.89667 0.2 3 12.2832 12.2785 12.2645 12.2095 11.8646 10.9876 4 16.0717 16.0620 16.0331 15.9209 15.2512 13.78667 5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 1 5.21414 5.21357 5.21189 5.20518 5.15993 5.01866 2 9.47889 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 <td rowspan="5">0.1</td> <td>1</td> <td>4.25636</td> <td>4.25557</td> <td>4.25324</td> <td>4.24418</td> <td>4.19078</td> <td>4.07085</td>	0.1	1	4.25636	4.25557	4.25324	4.24418	4.19078	4.07085	
4 14.5436 14.5352 14.5103 14.4141 13.8498 12.5890 5 17.9862 17.9716 17.9285 17.7629 16.8312 14.9281 1 4.67394 4.67338 4.66710 4.66504 8.44010 8.29731 7.89667 0.2 3 12.2832 12.2785 12.2645 12.2095 11.8646 10.9876 4 16.0717 16.0620 16.0331 15.9209 15.2512 13.7356 5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3380 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 15.592 1 5.92267 5.92200 5.9200 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 </td <td>2</td> <td>7.67648</td> <td>7.67446</td> <td>7.66845</td> <td>7.64507</td> <td>7.50420</td> <td>7.16181</td>		2	7.67648	7.67446	7.66845	7.64507	7.50420	7.16181	
5 17.9862 17.9716 17.9285 17.7629 16.8312 14.9281 1 4.67394 4.67338 4.67170 4.66504 4.62108 4.49240 2 8.46945 8.46759 8.46204 8.44010 8.29731 7.89667 0.2 3 12.2832 12.2785 12.2645 12.2095 11.8646 10.9876 4 16.0717 16.0620 16.0331 15.9209 15.2512 13.7356 5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 1 5.21414 5.21357 5.21189 5.20518 5.15993 5.0186 2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533 5 18.5948 18.5792 18.5329 18.3548<		3	11.1062	11.1019	11.0889	11.0383	10.7343	10.0068	
1			14.5436	14.5352	14.5103	14.4141	13.8498	12.5890	
0.2 8.46945 8.46759 8.46204 8.44010 8.29731 7.89667 0.2 3 12.2832 12.2785 12.2645 12.2095 11.8646 10.9876 4 16.0717 16.0620 16.0331 15.9209 15.2512 13.7356 5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 1 5.21414 5.21357 5.21189 5.20518 5.15993 5.01886 2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6538 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.533 5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1654 10.123		5	17.9862	17.9716	17.9285	17.7629	16.8312	14.9281	
0.2 3 12.2832 12.2785 12.2645 12.2095 11.8646 10.9876 4 16.0717 16.0620 16.0331 15.9209 15.2512 13.7356 5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 1 5.21414 5.21357 5.21189 5.20518 5.15993 5.01886 2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5532 1 5.92267 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 <td></td> <td>1</td> <td>4.67394</td> <td>4.67338</td> <td>4.67170</td> <td>4.66504</td> <td>4.62108</td> <td>4.49240</td>		1	4.67394	4.67338	4.67170	4.66504	4.62108	4.49240	
4 16.0717 16.0620 16.0331 15.9209 15.2512 13.7356 5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 1 5.21414 5.21357 5.21189 5.20518 5.15993 5.01886 2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533 5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 1 6.78646 6.78561 6.78306 6.72291		2	8.46945	8.46759	8.46204	8.44010	8.29731	7.89667	
5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416 1 5.21414 5.21357 5.21189 5.20518 5.15993 5.01886 2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533 5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263	0.2							10.9876	
1 5.21414 5.21357 5.21189 5.20518 5.15993 5.01886 2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533 5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7978 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 0.5 3 13.30908 13.0854 13.0696 6.77291 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.7356</td>								13.7356	
2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674 0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533 5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607		5	19.6346	19.6168	19.5639	19.3604	18.1949	15.6416	
0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438 4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533 5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 <td></td> <td></td> <td>5.21414</td> <td>5.21357</td> <td>5.21189</td> <td>5.20518</td> <td>5.15993</td> <td>5.01886</td>			5.21414	5.21357	5.21189	5.20518	5.15993	5.01886	
4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533 5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173								8.78674	
5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952 1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.8667 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128<	0.3							11.6438	
1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760 2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957 0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403									
0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 <td></td> <td>5</td> <td>18.5948</td> <td>18.5792</td> <td>18.5329</td> <td>18.3548</td> <td>17.3471</td> <td>15.2952</td>		5	18.5948	18.5792	18.5329	18.3548	17.3471	15.2952	
0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772 4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.68760</td>								5.68760	
4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909 5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364									
5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687 1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475	0.4								
1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964 2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 0.7 3 12.1248 12.1194 12.1032 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
0.5 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874 0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.15		5	18.7193	18.7003	18.6437	18.4263	17.2019	14.7687	
0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079 4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 <td rowspan="5">0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6.48964</td>	0.5							6.48964	
4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323 5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287									
5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265 1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409									
1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241 2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604									
0.6 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524 0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.297									
0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798 4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 <td rowspan="5">0.6</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.6								
4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400 5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690									
5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324 1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
0.7 2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654 0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444 4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534 5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205 1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326 2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
0.8 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044		1							
0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789 4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044									
4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044								11.4789	
								13.9044	
5 10.3232 10.3073 10.2332 10.0338 10.9140 14.0229		5	18.3252	18.3075	18.2552	18.0538	16.9146	14.6229	
1 5.09491 5.09416 5.09193 5.08306 5.02342 4.84002	0.9	1	5.09491	5.09416	5.09193	5.08306	5.02342	4.84002	
								7.79470	
								10.5143	
						15.1848		12.9787	
5 18.7706 18.7537 18.7035 18.5105 17.4200 15.2193		5	18.7706	18.7537	18.7035	18.5105	17.4200	15.2193	

clamped support, ν =0.3, α =5/6, K = N =20)								
S/L	Mode	ode Classical theory	h/L					
S/L	Mode		0.005	0.01	0.02	0.05	0.1	
	1	5.12956	5.12842	5.12504	5.11187	5.03279	4.84391	
	2	8.53225	8.52942	8.52100	8.48819	8.28899	7.79851	
0.1	3	11.9650	11.9591	11.9416	11.8737	11.4677	10.5175	
	4	15.4038	15.3930	15.3609	15.2369	14.5204	12.9812	
	5	18.8474	18.8292	18.7753	18.5695	17.4344	15.2211	
	1	5.63992	5.63898	5.63617	5.62505	5.55167	5.33712	
	2	9.42152	9.41866	9.41010	9.37634	9.15918	8.57073	
0.2	3	13.2354	13.2288	13.2090	13.1315	12.6552	11.5048	
	4	17.0022	16.9894	16.9512	16.8036	15.9445	14.1065	
	5	20.3723	20.3497	20.2827	20.0261	18.5905	15.7041	
	1	6.30151	6.30046	6.29731	6.28479	6.20116	5.94770	
	2	10.5280	10.5245	10.5139	10.4722	10.2044	9.48322	
0.3	3	13.9338	13.9255	13.9010	13.8051	13.2161	11.8024	
	4	15.7260	15.7134	15.6762	15.5321	14.6974	12.9468	
	5	19.6366	19.6165	19.5569	19.3291	18.0715	15.6424	
	1	7.14942	7.14808	7.14405	7.12808	7.02152	6.70052	
	2	10.6107	10.6067	10.5949	10.5484	10.2503	9.45384	
0.4	3	12.7332	12.7264	12.7062	12.6269	12.1398	10.9681	
	4	17.2339	17.2204	17.1803	17.0251	16.1249	14.2145	
	5	19.0450	19.0238	18.9608	18.7199	17.3909	14.8441	
	1	7.85321	7.85163	7.84690	7.82817	7.70352	7.33122	
	2	9.46008	9.45680	9.44699	9.40829	9.15909	8.48403	
0.5	3	14.1372	14.1294	14.1062	14.0154	13.4611	12.1454	
	4	15.7064	15.6938	15.6563	15.5112	14.6624	12.8359	

Table 4 Non-dimensionalized frequency parameter β of the double span Timoshenko beam (clamped-pinned-clamped support, $\nu = 0.3$, $\alpha = 5/6$, K = N = 20)

natural frequencies tend to approach those of the single-span beam results as the span ratio S/L approaches either the unity or zero.

20.4204

20.3985

20.3338

5

4. Conclusions

The pseudospectral method is applied to the free vibration analysis of double-span Timoshenko beams. Although the Rayleigh-Ritz method and the differential quadrature method have been successful in the vibration analysis of Timoshenko beams, there are some drawbacks inherent in these methods. For example, they require a process of constructing either weighting coefficients or characteristic polynomials since there are no readily available formulas. The pseudospectral method, on the other hand, uses simple series expansions such as the Chebyshev poly-

nomials as basis functions. The formulation as well as coding for computation is straightforward because the pseudospectral method undergoes the simple collocation process instead of integration.

18.7318

16.1487

20.0868

Basis functions are assumed for each section of the double-span beam. The continuity conditions at the intermediate support and the boundary conditions are considered as the side constraints, and the set of algebraic equations is condensed so that the number of degrees of freedom of the title problem matches the number of the pseudospectral expansion coefficients.

Numerical examples are provided for various thickness-to-length ratios and span ratios. The results from this method agree with those of Euler-Bernoulli beams when the thickness-to-length ratio is very small, however, deviate con-

siderably as the thickness-to-length ratio grows larger.

Acknowledgments

This work was supported by 2004 Hongik University Research Fund.

References

Boyd, J. P., 1989, *Chebyshev & Fourier Spectral Methods*, Lecture Notes in Engineering, Vol. 49, Springer, Berlin.

Cai, C. W., Cheung, Y. K. and Chen, H. C., 1988, "Dynamic Response of Infinite Continuous Beams Subjected to a Moving Force-an Exact Method," *Journal of Sound and Vibration*, Vol. 123, pp. 461~472.

Chatterjee, P. K., Datta, T. K. and Surana, C. S., 1994, "Vibration of Continuous Bridges under Moving Vehicle," *Journal of Sound and Vibration*, Vol. 169, pp. 619~632.

Gorman, D. J., 1974, "Free Lateral Vibration Analysis of Double-span Uniform Beams," *International Journal of Mechanical Sciences*, Vol. 16, pp. 345~351.

Hayashikawa, T. and Watanabe, N, 1985, "Free Vibration Analysis of Continuous Beam," *American Society of Civil Engineers Journal of Engineering Mechanics*, Vol. 111, pp. 639~653.

Hosking, R. J., Husain, S. A. and Milinazzo, F., 2004, "Natural Flexural Vibrations of a Continuous Beam on Discrete Elastic Supports," *Journal of Sound and Vibration*, Vol. 272, pp. 169~185.

Kukla, S., 1991, "The Green Function Method in Frequency Analysis of a Beam with Intermediate Elastic Supports," *Journal of Sound and Vibration*, Vol. 149, pp. 154~159.

Lee, J., 1998, "Application of Pseudospectral Element Method to the Analysis of Reisnner-Mindlin Plates," *Transactions of KSME A*, Vol. 22, No. 12, pp. 2136~2145. (in Korean with English Abstract)

Lee, J., 2002, "Eigenvalue Analysis of Circular Mindlin Plates Using the Pseudospectral Method," *Transactions of KSME A*, Vol. 26, No. 6, pp. 1169~1177. (in Korean with English Abstract)

Lee, J., 2003a, "Eigenvale Analysis of Rectangular Mindlin Plates by Chebyshev Pseudospectral Method," *KSME International Journal*, Vol. 17, No. 3, pp. 370~379.

Lee, J., 2003b, "In-Plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral method," *KSME International Journal*, Vol. 17, No. 8, pp. 1156~1163.

Lee, J., 2003c, "Application of the Chebyshev-Fourier Pseudospectral Method to the Eigenvalue Analysis of Circular Mindlin Plates with Free Boundary Conditions," *KSME International Journal*, Vol. 17, No. 10, pp. 1458~1465.

Lee, J., 2004, "Out-of-plane Free Vibration Analysis of Curved Timoshenko Beams by the Pseudospectral Method," *International Journal of Korean Society of Precision Engineering and manufacturing*, Vol. 5, No. 2, pp. 53~59.

Lee, J. and Schultz, W. W., 2004, "Eigenvalue Analysis of Timoshenko Beams and Axisymmetric Mindlin Plates by the Pseudospectral Method," *Journal of Sound and Vibration*, Vol. 269, pp. 609~621.

Lin, H. P. and Chang, S. C., 2005, "Free Vibration Analysis of Multi-span beams with Intermediate Flexible Constraints," *Journal of Sound and Vibration*, Vol. 281, pp. 155~169.

Mikami, T. and Yoshimura, J., 1984, "Application of the Collocation Method to Vibration Analysis of Rectangular Mindlin Plates," *Computers and Structures*, Vol. 18, No. 3, pp. 425~432.

Wang, R. T., 1997, "Vibration of Multi-span Timoshenko Beams to a Moving Force," *Journal of Sound and Vibration*, Vol. 207, pp. 731~742.

Zhou, D., 2001, "Free Vibration of Multi-span Timoshenko Beams Using Static Timoshenko Beam Functions," *Journal of Sound and Vibration*, Vol. 241, No. 1, pp. 725~734.