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Eigenvalue Analysis of Double-span Timoshenko Beams
by Pseudospectral Method

Jinhee Lee*
Department of Mechano-Informatics, Hongik University,
Chochiwon, Yeonki-kun, Choongnam 339-701, Korea

The pseudospectral method is applied to the free vibration analysis of double-span
Timoshenko beams. The analysis is based on the Chebyshev polynomials. Each section of the
double-span beam has its own basis functions, and the continuity conditions at the interme-
diate support as well as the boundary conditions are treated separately as the constraints of
the basis functions. Natural frequencies are provided for different thickness-to-length ratios
and for different span ratios, which agree with those of Euler-Bernoulli beams when the
thickness-to-length ratio is small but deviate considerably as the thickness-to-length ratio
grows larger.
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1. Introduction

The Euler-Bernoulli beam theory neglects the
effect of the transverse shear strain of beam
bending because of the assumption that the plane
cross—sections perpendicular to the axis of the
beam remain plane and perpendicular after de-
formation. The Euler-Bernoulli beam theory can
give excellent solutions to the vibration analysis
of slender beams. Beams in real practice, however,
may have appreciable thickness where the trans-
verse shear and rotary inertia are not negligible as
assumed in the Euler-Bernoulli beam theory. As
the result the Timoshenko beam theory that takes
the transverse shear and the rotary inertia into
consideration has gained more popularity.

Research on beam vibration can be divided
into three categories. Firstly, there exist exact
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solutions only for a restricted number of simple
cases. Secondly, studies of semi-analytic solutions
are available. Finally, there are the most widely
used discretization methods such as the finite
element method and the finite difference method.
As it is more useful to have analytical results
than to resort to numerical methods, most efforts
focus on developing efficient semi-analytic solu-
tions.

Multi-span beams are frequently used in many
mechanical and civil engineering applications
such as the rail systems and the bridges. Gorman
computed the natural frequencies of double-span
Euler-Bernoulli beams by proposing local solu-
tions for each span and by matching the con-
tinuity conditions at the intermediate support
(Gorman, 1974). The study on the free vibra-
tion of multi-span Euler-Bernoulli beams also
has been carried out by various methods such
as the finite element method (Hayashikawa and
Watanabe, 1985), the Green function method
(Kukla, 1991), and the transfer matrix method
(Hosking et al., 2004) . The free vibration analysis
of multi-span beams based on the Timoshenko
theory has been investigated using various meth-
ods such as Rayleigh-Ritz method (Zhou, 2001)
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and the transfer matrix method (Lin and Chang,
2005). Also the response of multi-span beams
subjected to moving loads or masses is studied
extensively (Cai et al., 1988 ; Chatterjee et al.,
1994 ; Wang, 1997).

The pseudospectral method can be considered
to be a spectral method that performs a colloca-
tion process. As the formulation is straightfor-
ward and powerful enough to produce approxi-
mate solutions close to exact solutions, this
method has been highly successful in many areas
such as turbulence modeling, weather prediction
and non-linear waves (Boyd, 1989). Even though
this method can be used for the solution of struc-
tural mechanics problems, it has been largely un-
noticed by the structural mechanics community,
and few articles are available where the pseudo-
spectral method has been applied. Recently it
has been successfully applied to the eigenvalue
problems of Timoshenko beams and Mindlin
plates (Lee, 1998 ; 2002 ; 2003a ; 2003b ; 2003c ;
2004 ; Lee and Schultz, 2004). In the present
work, the pseudospectral method is applied to
the free vibration analysis of double-span Timo-
shenko beams.

2. Formulations of Double-span
Timoshenko Beams

Consider a uniform beam of length L, which
is either pinned or clamped at the ends and has
a roller support at an intermediate location x=3S
as depicted in Fig. 1. The equations of motion
of the beam in the intervals of 0<x<S and
S<x <L are given by

d*o dw _ ,\_ 5
m'ﬁ+MGQE-@— Wol0
(1)
d (dw_p\__ .
athx(dx 0)— w’ohw

where 0, w and w are the lateral deflection,
the rotation of the normal line and the natural
frequency, respectively. £ and G are Young’s
modulus and the shear modulus, @ is the shear
correction factor, / is the thickness of the beam,
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Fig. 1 Beam geometry and support conditions

I is the second moment of area, and p is the
density.
The boundary conditions are either

clamped : §=0, w=0
or (2)

: .do _
pinned : dx =0, w=0

at x=0 and at x=L. The continuity conditions
at x=S are represented as follows :

w(x=S")=0
w(x=S*) =0
0(x=S)=0(x=5") (3)
A (=57 =L (x=5")

It is convenient to introduce normalized variables
21 and 2z, such that each of the section between the
supports is represented by

= _2x—S
1 S

_2x—S—L
2= L-S

e[—1, 1] for (0<x<S)
(4)
e[—1, 1] for (S<x<L)

The governing equations (1) can be rewritten as
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where " and t represent the differentiations with
respect to 21 and 2, respectively. The series ex-
pansions of the exact solutions @ (x) and w(x)
In this study,
however, the dependent variables are approxi-

have infinite numbers of terms.

mated by the partial sums as follows :

K+2

9( );§<21) kzldka—1<Zl>
K‘H (—1<a<1) (1)
w (X) =w (Zl> :1§1 brTrr (2‘1)
and
000 =0(2) =2 cnTra (=)
N‘+2 (—1<2<1) (8)

w(x) Zw(z) =nZ:11dnTH (22)

where ar, br, ¢» and d, are the expansion coeffi-
cients and 7y-; is the Chebyshev polynomial of

Mikami and
Yoshimura suggested an efficient way to handle

the first kind of degree of n—1.

the boundary conditions by adopting less collo-
cation points than the number of expansion terms
(Mikami and Yoshimura, 1984).

Expansions (7) and (8) are substituted into
Egs. (5) and (6) and are collocated at the Gauss—
Lobatto collocation points

2i—1
éi:_COS% (i=1,2, -, K) for (=1<z<1)
(j-1) ¥
yj:—cosﬂzj—N (7=1,2,+, N) for (=1<2<1)
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Egs. (10) and (11) can be rearranged in the ma-
trix form

[HI{s}+[H*1{6*} (12)

=*([FI{8}+[F*1{6*})

where the vectors in Eq. (12) are defined by

{6}={d1 az** Ak b1 bz“bK C1 C2**CN d1 dZ"dN}T (13>

{5*} {dK+1 Ak+2 brs1 Driz Cns1 ez dust dN+2}
The total number of equations in Eq. (12) is
2(K+ N) whereas the total number of unknowns

3) is 2(K+N+4). The remaining eight
equations are obtained from the continuity con-

in Eq. (1

ditions and the boundary conditions.
Using the expansions (7) and (8), the continu-
ity conditions (3) can be rewritten as

N+2

> kak—1(1) =0
A=1

K+2

ngldnTn—l(_ 1) =0

K+2

N+2
kgldka_l(l) :nglCnTn—l(_ 1)

N+2

1K+2 ,
?kglakafl < > L S ZCnTn 1 ( )
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The boundary conditions are either

K+2

clamped : kZla/ka_l(—l) =0

K+2

> kak—1<_ 1) =0
k=1

or (15)
K+2

pinned : kZlakTé—l (—1)=0
K+2

> kak—1<* 1) =0
k=1

at x=0, and either

N+2

clamped : ZICnTn—1<1> =0

N+2

2 T (1) =0

or (16)
N+2

pinned : ElchJ_l (1)=0
=
N+2

2 diTh ( 1) =0
A=1

at x=1L.

The continuity conditions (14) and boundary
conditions (15)-(16) can be rearranged in the
matrix form

[UNo}+[VI{e*}={0} (17)

where {0} is a zero vector. Since { 8* } in Eq. (17)
can be expressed as

{(6*})=—[VI'[UN} (18)

the set of equations (12) can be reformulated as

(H]=[H*][V]I'LUD{s}

— AR - PV oDsy 1Y

The solution of (19) yields the estimate for the
natural frequencies and the corresponding mode
shapes.

3. Numerical Examples

A preliminary run for the convergence check of
the eigenvalues of a double-span Timoshenko
beam which has a clamped-pinned-pinned sup-
port is carried out for 4/L=0.01 and S/L=0.5,
and the results are given in Table 1. The numbers
of collocation points which determines the size of
the problem change from K=M=3 to K=M=
20. The total number of equations in (10) and
(11) is 2(K+N), and the size of matrices in
equation (19) becomes 80X80 for K=M=20.
Table 1 clearly shows the rapid convergence na-
ture of the pseudospectral method, where it is
readily shown that it requires less than K=M=
10 for the 4 lowest eigenvalues to converge to 6
significant digits, and less than K=M=15 for
eigenvalues of the 10 lowest modes to 6 significant
digits. The numbers given in Tables 1~4 are the
non-dimensionalized frequency parameters /S
defined as

B=Y oA/ EI (20)

where A is the cross sectional area of the beam.

Table 1 Convergence test of the non-dimensionalized frequency parameter 4 of the double span Timoshenko

beam as the number of the collocation points increase (clamped-pinned-pinned support, v=0.3, a=

5/6, h/L.=0.01, S/L=0.5)

Mode K=N=3 K=N=5 K=N=10 K=N=15 K=N=20
1 6.92346 6.78556 6.78306 6.78306 6.78306
2 9.20854 8.93385 8.91641 8.91641 8.91641
3 13.8677 13.0692 13.0692 13.0692
4 16.6498 15.1408 15.1408 15.1408
5 21.3141 19.3074 19.3059 19.3059
6 24.3702 21.3626 21.3590 21.3590
7 25.5133 25.5046 25.5046
8 27.5497 27.5302 27.5302
9 32.2921 31.6532 31.6532
10 34.9092 33.6454 33.6454




Eigenvalue Analysis of Double-span Timoshenko Beams by Pseudospectral Method

Through out the paper, Poisson’s ratio and the
shear coefficient of the beam are y=0.3 and o=
5/6, respectively.

Computational results for the collocation
points K=M =20 with pinned-pinned-pinned,
clamped-pinned-pinned, and clamped-pinned-
clamped supports are given in Tables 2~4, re-
spectively. The natural frequencies are calculated
for different thickness-to-length ratios ranging
from %/L=0.005 to #/L=0.1. It is well known
that the static and dynamic characteristics of
Timoshenko beams approach those of Euler-
Bernoulli beams when the thickness of the beams
is very small, and the eigenvalues based on the
Euler-Bernoulli theory (Gorman, 1974) are given
in Tables 2~4 for the purpose of comparison.
The results of Tables 2~4 show that the Timo-

shenko beam results are very close to the Euler-

1757

when the thickness—
to-length ratio %/L is small, showing that at
least three significant digits are identical with

Bernoulli beam results

the Euler-Bernoulli results in most cases when
the thickness-to-length ratio is 0.005. As /L
grows larger, however, the computed eigenvalues
show some quantitative differences from those of
Euler-Bernoulli beams. The natural frequencies
w in Tables 2~4 increase as 4/ L increases, even
though the frequency parameters 5 in Tables 2~4
tend to decrease because the second moment of
area [ grows faster than @® as 4/L increases.

It is possible that there might be optimal
combinations of K and M, the numbers of the
Gauss-Labotto collocation points, when the size
of one span is different from the other, however,
they are assumed to be the same for the sake of
simplicity. It is also shown that the computed

Table 2 Non-dimensionalized frequency parameter £ of the double span Timoshenko beam (pinned-pinned-

pinned support, v=0.3, a=5/6, K=N=20)

S/L Mode Classical /L
theory 0.005 0.01 0.02 0.05 0.1
1 4.22637 422591 4.22455 421913 4.18246 4.06718
2 7.63130 7.62983 7.62542 7.60798 7.49282 7.15781
0.1 3 11.0505 11.0469 11.0361 10.9934 10.7217 10.0034
4 14.4793 14.4718 14.4497 14.3633 13.8364 12.5864
5 17.9123 17.8990 17.8592 17.7057 16.8169 14.9262
1 4.61832 4.61794 4.61680 4.61224 4.58106 4.47920
2 8.39155 8.39000 8.38536 8.36697 8.24478 7.88141
0.2 3 12.1617 12.1576 12.1452 12.0966 11.7863 10.9647
4 15.7080 15.6997 15.6749 15.5784 14.9926 13.6132
5 17.8725 17.8574 17.8127 17.6395 16.6350 14.5092
1 5.13179 5.13136 5.13010 5.12506 5.09060 497761
2 9.27693 9.27513 9.26976 9.24847 9.10743 8.69103
0.3 3 11.7804 11.7760 11.7630 11.7119 11.3851 10.5183
4 14.2845 14.2769 14.2544 14.1666 13.6316 12.3683
5 18.4048 18.3907 18.3488 18.1870 17.2526 15.2730
1 5.78261 5.78210 5.78058 5.77451 5.73309 5.59796
2 8.76786 8.76607 8.76073 8.73954 8.59896 8.18261
0.4 3 11.3129 11.3091 11.2976 11.2522 10.9627 10.1941
4 15.7080 15.6997 15.6749 15.5784 14.9926 13.6132
5 17.3296 17.3158 17.2749 17.1165 16.1984 14.2547
1 6.28319 6.28265 6.28106 6.27471 6.23136 6.09066
2 7.85321 7.85163 7.84690 7.82817 7.70352 7.33122
0.5 3 12.5664 12.5621 12.5494 12.4994 12.1813 11.3431
4 14.1372 14.1294 14.1062 14.0154 13.4611 12.1454
5 18.8496 18.8352 18.7926 18.6282 17.6810 15.6790
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Table 3 Non-dimensionalized frequency parameter § of the double span Timoshenko beam (clamped-pinned-
pinned support, y=0.3, @=5/6, K=N=20)

S/L Mode Classical h/L
theory 0.005 0.01 0.02 0.05 0.1
1 4.25636 4.25557 4.25324 4.24418 4.19078 4.07085
2 7.67648 7.67446 7.66845 7.64507 7.50420 7.16181
0.1 3 11.1062 11.1019 11.0889 11.0383 10.7343 10.0068
4 14.5436 14.5352 14.5103 14.4141 13.8498 12.5890
5 17.9862 17.9716 17.9285 17.7629 16.8312 14.9281
1 4.67394 4.67338 4.67170 4.66504 4.62108 4.49240
2 8.46945 8.46759 8.46204 8.44010 8.29731 7.89667
0.2 3 12.2832 12.2785 12.2645 12.2095 11.8646 10.9876
4 16.0717 16.0620 16.0331 15.9209 15.2512 13.7356
5 19.6346 19.6168 19.5639 19.3604 18.1949 15.6416
1 5.21414 5.21357 5.21189 5.20518 5.15993 5.01886
2 9.47849 9.47628 9.46967 9.44352 9.27248 8.78674
0.3 3 13.3430 13.3370 13.3190 13.2484 12.8034 11.6438
4 15.0778 15.0667 15.0338 14.9062 14.1554 12.5533
5 18.5948 18.5792 18.5329 18.3548 17.3471 15.2952
1 5.92267 5.92200 5.92000 5.91202 5.85800 5.68760
2 10.1680 10.1651 10.1564 10.1223 9.89863 9.25957
0.4 3 11.7988 11.7936 11.7778 11.7159 11.3304 10.3772
4 16.1768 16.1668 16.1372 16.0220 15.3361 13.7909
5 18.7193 18.7003 18.6437 18.4263 17.2019 14.7687
1 6.78646 6.78561 6.78306 6.77291 6.70440 6.48964
2 8.92665 8.92408 8.91641 8.88607 8.68790 8.12874
0.5 3 13.0908 13.0854 13.0692 13.0056 12.6079 11.6079
4 15.1832 15.1726 15.1408 15.0173 14.2814 12.6323
5 19.3731 19.3562 19.3059 19.1128 18.0245 15.8265
1 6.92042 6.91939 6.91630 6.90403 6.82124 6.56241
2 9.05288 9.05058 9.04371 9.01651 8.83870 8.33524
0.6 3 12.4682 12.4624 12.4450 12.3769 11.9505 10.8798
4 16.2966 16.2863 16.2556 16.1364 15.4279 13.8400
5 18.1094 18.0924 18.0418 17.8475 16.7477 14.5324
1 6.20547 6.20461 6.20201 6.19167 6.12179 5.90227
2 10.1984 10.1957 10.1874 10.1545 9.94041 9.33654
0.7 3 12.1248 12.1194 12.1032 12.0400 11.6436 10.6444
4 15.2865 15.2764 15.2462 15.1287 14.4279 12.8534
5 19.4211 19.4028 19.3487 19.1409 17.9699 15.6205
1 5.57754 5.57682 5.57465 5.56604 5.50770 5.32326
2 9.33697 9.33447 9.32698 9.29737 9.10373 8.55533
0.8 3 13.0892 13.0832 13.0656 12.9963 12.5637 11.4789
4 16.4345 16.4239 16.3922 16.2690 15.5378 13.9044
5 18.3252 18.3075 18.2552 18.0538 16.9146 14.6229
1 5.09491 5.09416 5.09193 5.08306 5.02342 4.84002
2 8.48413 8.48191 8.47525 8.44894 8.27728 7.79470
0.9 3 11.9070 11.9020 11.8868 11.8274 11.4550 10.5143
4 15.3373 15.3275 15.2983 15.1848 14.5071 12.9787
5 18.7706 18.7537 18.7035 18.5105 17.4200 15.2193
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Table 4 Non-dimensionalized frequency parameter 3 of the double span Timoshenko beam (clamped-pinned-

clamped support, v=0.3, a=5/6, K=N=20)

S/L Mode Classical h/L
theory 0.005 0.01 0.02 0.05 0.1
1 5.12956 5.12842 5.12504 5.11187 5.03279 4.84391
2 8.53225 8.52942 8.52100 8.48819 8.28899 7.79851
0.1 3 11.9650 11.9591 11.9416 11.8737 11.4677 10.5175
4 15.4038 15.3930 15.3609 15.2369 14.5204 12.9812
5 18.8474 18.8292 18.7753 18.5695 17.4344 15.2211
1 5.63992 5.63898 5.63617 5.62505 5.55167 5.33712
2 9.42152 9.41866 9.41010 9.37634 9.15918 8.57073
0.2 3 13.2354 13.2288 13.2090 13.1315 12.6552 11.5048
4 17.0022 16.9894 16.9512 16.8036 15.9445 14.1065
5 20.3723 20.3497 20.2827 20.0261 18.5905 15.7041
1 6.30151 6.30046 6.29731 6.28479 6.20116 5.94770
2 10.5280 10.5245 10.5139 10.4722 10.2044 9.48322
0.3 3 13.9338 13.9255 13.9010 13.8051 13.2161 11.8024
4 15.7260 15.7134 15.6762 15.5321 14.6974 12.9468
5 19.6366 19.6165 19.5569 19.3291 18.0715 15.6424
1 7.14942 7.14808 7.14405 7.12808 7.02152 6.70052
2 10.6107 10.6067 10.5949 10.5484 10.2503 9.45384
0.4 3 12.7332 12.7264 12.7062 12.6269 12.1398 10.9681
4 17.2339 17.2204 17.1803 17.0251 16.1249 14.2145
5 19.0450 19.0238 18.9608 18.7199 17.3909 14.8441
1 7.85321 7.85163 7.84690 7.82817 7.70352 7.33122
2 9.46008 9.45680 9.44699 9.40829 9.15909 8.48403
0.5 3 14.1372 14.1294 14.1062 14.0154 13.4611 12.1454
4 15.7064 15.6938 15.6563 15.5112 14.6624 12.8359
5 20.4204 20.3985 20.3338 20.0868 18.7318 16.1487

natural frequencies tend to approach those of the
single-span beam results as the span ratio S/L
approaches either the unity or zero.

4. Conclusions

The pseudospectral method is applied to the
free vibration analysis of double-span Timo-
shenko beams. Although the Rayleigh-Ritz meth-
od and the differential quadrature method have
been successful in the vibration analysis of Timo-
shenko beams, there are some drawbacks inherent
in these methods. For example, they require a
process of constructing either weighting coeftfi-
cients or characteristic polynomials since there
are no readily available formulas. The pseudo-
spectral method, on the other hand, uses simple
series expansions such as the Chebyshev poly-

nomials as basis functions. The formulation as
well as coding for computation is straightfor-
ward because the pseudospectral method under-
goes the simple collocation process instead of
integration.

Basis functions are assumed for each section of
the double-span beam. The continuity conditions
at the intermediate support and the boundary
conditions are considered as the side constraints,
and the set of algebraic equations is condensed
so that the number of degrees of freedom of the
title problem matches the number of the pseudo-
spectral expansion coefficients.

Numerical examples are provided for various
thickness-to-length ratios and span ratios. The
results from this method agree with those of
Euler-Bernoulli beams when the thickness-to-
length ratio is very small, however, deviate con-
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siderably as the thickness-to-length ratio grows
larger.
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